Установка ультрафильтрации воды. Установки ультрафильтрации. Результаты испытаний установки ультрафильтрации воды

30 12 730 3050/1000/2400 ПВО-UF-40 40 16 920 3400/1000/2400 ПВО-UF-50 50 20 1110 4050/1300/2400 ПВО-UF-60 60 24 1300 4400/1300/2400 ПВО-UF-70 70 28 1520 4750/1300/2400 ПВО-UF-80 80 32 1710 5100/1300/2400 ПВО-UF-90 90 36 1910 5400/1300/2400

Модели оборудования

Назначение ультрафильтрации воды

Ультрафильтрация воды применяется для очистки жидкости от белков, высокомолекулярных органических соединений. Установки способны частично задерживать вирусы и бактерии. Выполняется очистка от тонкодисперсионных механических примесей.

Достаточно широкие возможности метода обуславливают его широкую востребованность в различных отраслях:

  • подготовка питающей воды в установках умягчения и обратного осмоса (котельные, бойлерные, телообменное оборудование);
  • очистка потока воды из открытых источников от бактерий и вирусов (подготовка питьевой и технологической воды);
  • очистка производственных стоков.

Финишная ступень доочистки после биологических очистных сооружений.

Состав установок ультрафильтрации серии ПВО-UF

Основное оборудование:

Комплектация

01

02

Механический фильтр предварительной механической очистки, 300 мкм;

Дозирование коагулянта

Статический смеситель;

Контактная емкость;

Ультрафильтрационные модули;

Система автоматической промывки мембран;

Cтанции дозирования реагентов CEB-промывки

Насос обратной промывки;

Защита насоса от работы в режиме сухого хода;

Гидрозаполненные манометры входного и рабочего давления;

Визуальные измерители потока очищенной и промывочной воды;

Система регулировки рабочих параметров;

Система задержки и плавного включения насоса;

Рабочие трубопроводы из PVC-U / полипропилена;

Рама из cтали с порошковой окраской;

Рама из нержавеющей cтали;

Мембранные клапаны для управления потоками;

Электрические задвижки с ручным дублированием для управления потоками;

Станция дозирования гипохлорита;

Панель для отбора проб воды;

Система автоматического управления установкой на базе контроллера;

Шкаф управления с контрольной панелью;

Частотное регулирование работы насосного оборудования;

Счетчик выработки пермеата;

Комплект датчиков (сухой ход, давление пермеата, перепад давления в модуле, поплавковый для емкости)

Опции (по запросу):

Комплектация

01

02

03

Расширенная система управления на базе промышленного контроллера;

Система предварительной подготовки исходной воды перед установкой ультрафильтрации;

Диспетчеризация процесса управления оборудования с выводом на компьютер инженера-технолога или оператора;

Емкости чистой и/или воды для промывки;

Насос подающий из нержавеющей стали;

Резервирование главного оборудование;

Система CIP-промывки;

Станция дозирования корректировки уровня pH;

Блок адсорбции;

Расширенная гарантия - 5 лет.

Конструкция модулей ультрафильтрации воды:

Принцип работы ультрафильтрации

Ультрафильтрация как класс относится к баромембранным процессам разделения. Действующей силой является перепад давления по разные стороны фильтровальной перегородки (мембраны).

Для предотвращения быстрого выхода оборудования из строя входная вода должна подвергаться предварительной очистке от мелких механических примесей. Эту функцию выполняет механический фильтр-“грязевик”.

При необходимости во входную линию добавляются вспомогательные реагенты - коагулянты и флокулянты. С их помощью возможно задержание частиц размеры которых меньше, чем диаметр пор мембраны. Добавление, в поток реагентов вызывает образование небольших хлопьев(флокул). Коллоидные и органические примеси, которые необходимо удалить закрепляются на поверхности полученных хлопьев.

Периодически, для восстановления работоспособности установки должна выполняться промывка фильтрующего модуля. Она осуществляется обратным током воды из сборника пермеата.

При образовании прочных химических осадков используются дополнительные реагенты (кислота, щелочь или гипохлорит натрия). Промывочный раствор проходит с внешней стороны волокон, внутрь вымывая в дренажную линию все накопившиеся загрязнения.

Конструкция установки ультрафильтрации

Основной элемент ультрафильтрационной установки - фильтрующий модуль. Установка ультрафильтрации, реализуемая компанией, модули выполнены по технологии Multibore®.

Поток воды пропускается через пучок многоканальных волокон. Волокна изготавливаются из полиэстерсульфона. Особенностью этогоматериала является наличие мелких структурных пор диаметром до 0,02мкм.Фактически стенки волокон представляют собой фильтр из полупроницаемой мембраны.

Компоновка модуля обеспечивает направление входного потока воды внутрь пучка волокон. Процесс фильтрации проходит изнутри наружу. Задерживаемые загрязнения остаются внутри каналов. Чистая вода (пермеат) через стенки выходит наружу и отводится из корпуса.

Состав ультрафильтрационной установки

В зависимости от условий эксплуатации, требований, предъявляемых к качеству очищенной воды и необходимому уровню автоматизации, состав основных структурных элементов может несколько различаться. В базовом, стандартном исполнении имеет следующий состав:

  • блок фильтрующих модулей;
  • реагентный блок (дозирование растворов коагулянта и флокулянта);
  • фильтр предварительной очистки;
  • узел автоматической промывки;
  • блок автоматического управления;
  • обвязка и трубопроводная арматура.

Дополнительно, по желанию заказчика, или в случае необходимости, комплектация установки может быть расширена. Дополнительно в состав вводятся:

  • емкость-накопитель,для сбора фильтрата;
  • нагнетающий насос на входной линии;
  • контрольно-измерительная аппаратура (количество и функциональное назначение приборов определяет степень автоматизации системы).

Преимущество ультрафильтрации

Производство в РФ.
. Рассрочка платежа.
. Возможность использования в комплексных системах очистки воды.
. Бесплатная доставка.
. Широкий модельный ряд.
. Длительный период эксплуатации.
. Гарантия 5 лет.
. Компактность.
. Возможность полной автоматизации.
. Модульная конструкция, возможность увеличения производительности.
. Низкое энергопотребление.
. Малый расход воды.
. 100%-ая очистка от взвешенных веществ.
. Удаление бактерий и вирусов из воды.
. Очистка воды с высокой мутностью и цветностью.
. Удаление высокомолекулярных органических соединений.
. Интеграция с существующими системами управления.
. Наивысший уровень очистки среди всех технологий осветления.
. Индивидуальные предварительные испытания (пилотные испытания).

Эффективность оборудования, предлагаемого компанией НПЦ «Промводочистка» подтверждается результатами работы большого количества реализованных и успешно работающих объектов на всей территории России.



Варианты технологических компоновок

Установки ультрафильтрации НПЦ «ПромВодОчистка» можно использовать в различных по сложности технологических процессах. В зависимости от качества входящей воды, компоновка этапов процесса очистки может быть выполнена в нескольких вариантах:

  • вариант 1:
    • грубая механическая очистка;
    • ультрафильтрация.

Применяется для очистки воды поступающей из скважины. Для входящего потока характерно высокое содержание взвешенных веществ при нахождении остальных параметров в пределах нормы.

  • вариант 2:
    • грубая механическая очистка;
    • механическая фильтрация сквозь слой инертного материала;
    • ультрафильтрация;
    • фильтрация через слой сорбционного материала.

Подобная схема применяется при обработке воды с высоким содержанием соединений железа, взвешенных веществ и повышенной мутности. Применяется для очистки воды, забираемой из открытых источников водозабора.

  • вариант 3
    • грубая механическая очистка;
    • ультрафильтрация;
    • умягчение воды.

Основная область применения - воды поверхностных источников, имеющие повышенное содержание солей магния и кальция.

  • вариант 4
    • грубая механическая очистка;
    • ультрафильтрация;
    • фильтрация через слой сорбционного материала;
    • обработка на установках обратного осмоса.

Основное назначение - обработка воды с повышенным содержанием ионов тяжелых металлов и превышениями по регламентируемым органолептическим показателям. Параллельно может быть выполнена очистка от взвешенных веществ, солей железа, кальция и магния.

Возможности использования установок ультрафильтрации не ограничиваются приведенными вариантами. При обращении в НПЦ «ПромВодОчистка» специалисты проектного отдела помогут подобрать весь технологический цикл очистки с применением мембранного оборудования для любых условий.

Ультрафильтрация - это мембранный процесс разделения растворов, осмотическое давление которых мало. Этот метод используется при отделении сравнительно высокомолекулярных веществ, взвешенных частиц, коллоидов и др. Ультрафильтрация, по сравнению с обратным осмосом, более высокопроизводительный процесс, так как высокая проницаемость мембран достигается при давлении 0,2--1 МПа.

В зависимости от целей ультрафильтрационного процесса мембраны пропускают:

растворитель и только низкомолекулярные соединения (разделения высоко- и низкомолекулярных соединений и концентрирование высокомолекулярных соединений);

только растворитель (концентрирование высокомолекулярных соединений);

растворитель и фракции высокомолекулярных соединений с определенными молекулярной массой или размером макромолекулярных клубков (фракционирование полимерных соединений).

Ультрафильтрация, в отличие от обратного осмоса, применяют для разделения систем, в которых молекулярная масса растворенных компонентов намного большая за молекулярную массу растворителя (воды). На практике ультрафильтрацию используют тогда, когда хотя бы один из компонентов раствора имеет молекулярную массу свыше 500 дальтон.

Движущей силой процесса ультрафильтрации, как и обратного осмоса, есть различие давлений с обеих сторон мембраны, но, поскольку осмотические давления растворов высокомолекулярных соединений, как правило, низкие сравнительно с рабочим давлением, то во время определения параметров ультрафильтрации их не учитывают. Если ультрафильтрационная мембрана не способная задерживать низкомолекулярные соединения (в особенности электролиты), то и в этом случае осмотические давления растворов низкомолекулярных соединений также не учитываются во время определения движущей силы процесса. За высоких концентраций растворов полимеров, когда осмотические давления достигают значений, соизмеримых с рабочим давлением, движущую силу определяют за уравнением

Р=Р -1.

Эффективность ультрафильтрационного разделения растворителей веществ определяют за конкретным соотношением двух основных составных процесса - равновесной и неравновесной. Если взнос равновесной составной, что выражается через коэффициент распределения раскрытого вещества между мембраной и раствором, будет меньшим, то за всех других одинаковых условий мембрана лучше будет задерживать данное растворенное вещество. В случае ультрафильтрации основной взнос в определении величины коэффициента распределения принадлежит стеричним ограничением, обычно с учетом важной роли поверхностных свойств мембран (гидрофильности, заряда, химической природы функциональных групп и т.п.).

Реализация неравновесной составной процесса, когда мембрана находится в системе, где существует градиент концентрации и давления с обеих ее сторон, также имеет особенности сравнительно с обратноосмотическими мембранами. Это связано с высокой проницаемостью сравнительно крупнопористых (диаметр пор 5-500 нм) ультрафильтрационных мембран и низкими коэффициентами диффузии макромолекул и коллоидов в растворе, которые на несколько порядков ниже, чем низкомолекулярных соединений. Диффузное перенесение раскрытых высокомолекулярных соединений и коллоидов чрезвычайно маленькое, и эта особенность предопределяет практически неминуемое их накопление на поверхности ультрафильтрационных мембран (гелеобразование), что существенным образом изменяет поровую структуру и свойства мембраны. Эти изменения оказываются в значительном или катастрофическом снижении объемного потока растворителя сквозь мембрану и возрастании коэффициента задерживания, то есть гелиевый пласт способный к самозадержанию и фактически выполняет роль мембраны.

Итак, решения конкретной задачи ультрафильтрационного разделения часто состоит в компромиссном решении: использования менее проницаемой мембраны, но такой, что имеет высокую степень монодисперсности пор, определенный заряд поверхности или степень гидрофильности.

В отличие от обратного осмоса, когда в случае повышения задерживания мембранами их проницаемость уменьшается, во время ультрафильтрации в зависимости от условий процесса эти характеристики могут одновременно повышаться и снижаться.

Основные параметры разделения - задерживание и производительность определяются верхним активным (селективным) пластом мембраны. Маленькая его толщина предопределяет низкое гидродинамическое сопротивление потоку фильтрата и, значит, высокую проницаемость. Изменяя коллоидно-химические свойства этого пласта (пористость, гидрофильность, заряд поверхности и т.п.), можно дополнительно регулировать его задерживание и проницаемость.

В отличие от обратноосмотических мембран, которые обязательно должны быть гидрофильными (это связано с механизмом опреснительного действия мембран), ультрафильтрационные мембраны, как правило, имеют низкую гидрофильность или даже гидрофобные.

Преимуществами методов гипер- и ультрафильтрами являются: простота аппаратуры; возможность разделения растворов при нормальной температуре, выделения цепных продуктов, одновременной очистки воды от органических, неорганических и бактериальных загрязнений; малая зависимость эффективности очистки от концентрации загрязнений в воде. Наряду с этим имеются и существенные недостатки. К ним относится явление концентрационной поляризации, заключающееся в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса через нее растворителя, а также необходимость проведения процесса при повышенном давлении в системе.

Промышленные аппараты обратного осмоса и ультрафильтрации.

В настоящее время применяют следующие типы аппаратов, различающиеся способом размещения мембран.

  • 1. Аппараты пита "фильтр-пресс" с плоскокамерными фильтрующими элементами. Применяют при невысокой производительности установок. Пакет фильтрующих элементов зажимается между двумя фланцами и стягивается болтами. Основной недостаток этих аппаратов - невысокая удельная площадь поверхности мембран (60--300м 2 на 1м 3 объема аппарата) и большая металлоемкость.
  • 2. Аппараты с трубчатыми фильтрующими элементами (рис.3.3). Имеют ряд преимуществ: простота конструкции, малая металлоемкость, легкость турболизации раствора. Недостаток аппаратов: невысокая удельная площадь поверхности мембран (100--200 м 2/м 3), трудность замены вышедших из строя мембран.

3. Аппараты с фильтрующими элементами рулонного или спирального типа.

Имеют большую удельную площадь поверхности мембран (300-800 м 2/м 3). Полупроницаемая мембрана с подложкой свернута в виде спирали и образует цилиндрический модуль диаметром до 100мм и длинной до одного метра (рис. 3.4). Один модуль системы "Галф-Аяко" с площадью поверхности мембраны 4,65м 2 и объемом около 0,007 м 3 имеет пропускную способность примерно 1,8 м 3 воды в сутки. Недостаток этих аппаратов - сложность монтажа и смены мембран.

4. Аппараты с мембранами: из полых волокон малого диаметра (45 - 200 мкм). Волокна (из ацетатцеллюлозы, нейлона и др.) собираются в пучки длинной 2 - 3м, которые прикрепляются к стенкам аппарата с помощью эпоксидной смолы (рис.3.5).


Удельная площадь поверхности мембран в этих аппаратах достигает 20 000 м 2/м 3. Расположение волокон может быть линейным, что требует заделки в две трубные решетки, или U - образным с заделкой в одну трубную решетку. Модель фирмы "Дюпон" имеет диаметр 35,5см, длину 1м и содержит 900 000 волокон общей поверхностью около 1700м 2.

Аппараты с мембранами из полых волокон компактны и высокопроизводительны. Недостаток аппаратов - трудность замены поврежденных волокон. Если разделяемый раствор протекает внутри волокон, то необходима тщательная очистка его от механических загрязнений.

Характеристика установки фирмы "Дюпон" производительностью 40м 3 очищенной воды в сутки приведена ниже:

Выпускаются установки производительностью 5--1000м 3/сутки.

Примеры применения метода обратного осмоса и ультрафильтрации

Обратный осмос и ультрафильтрация могут успешно использоваться для очистки сточных вод химических, нефтехимических, целлюлозно-бумажных и других производств.

Результаты исследований по очистке и концентрированию сточных вод методом обратного осмоса при давлении 4,1МПа представлены в таблице 1

Из приведенных данных видно, что метод обратного осмоса обеспечивает эффективную очистку сточных вод от минеральных примесей. Получаемый концентрированный раствор может быть направлен на регенерацию для извлечения и использования ценных примесей. Метод гиперфильтрационной очистки является перспективным для регенерации солей тяжелых металлов из сточных вод.

С помощью ацетатцеллюлозных мембран удастся концентрировать хромсодержащие сточные воды гальванических производств в 50 - 100 раз при оптимальном давлении 8 - 10 МПа. На установке обратного осмоса достигнута 93 %-ная эффективность очистки сточных вод от хрома. Полученный концентрированный раствор направляют затем на катионитовые фильтры для очистки от ионов Na+, Ca+, Fe2+ и Fe3+ и возвращают в производство.

Экспериментальные данные показывают, что при давлении 3 - 3,5МПа и селективности мембран по NaCl, равной 93,5 %, обеспечивается солезадержание по растворам K2Cr2O7, CuSO4 и ZnSO4 на 96,5 - 99,0%.

На промышленной установке производительностью 0,45 м 3/ч, работающей под давлением 3 МПа, из сточных вод гальванического производства извлекаются NiCl2 и NiSO4. Полученные соли никеля вновь используются в производстве. Смена ацетатцеллюлозных мембран проводился oдин раз в 1,5 года.

С помощью полупроницаемых мембран можно концентрировать растворы щелочей, аммонийных, фосфатных и нитратных солей при производстве удобрений, глицерина, спирта и др.

Метод обратного осмоса может быть успешно использован для "третичной" очистки сточных вод от соединений фосфора и азота. Результаты длительной эксплуатации полупромышленной установки обратного осмоса для очистки бытовых сточных вод показали, что содержание фосфора снижалось на 94%, аммиака - на 90 % и нитратов - на 64 %.

Очистка сточных вод обратным осмосом без их предварительной обработки проводится на опытной установке в Сан-Диего (США). Растворенные соли удаляются из воды более чем на 95%, а щелочно земельные элементы, нитрат-, фосфат- и сульфат-ионы - более чем на 98%. После очистки вода не является питьевой, но может употребляться в сельском хозяйстве и промышленности, в том числе в системах оборотного водоснабжения. Использование необработанных вод прводило к механическим повреждениям мембран твердыми частицами загрязнений и высокой степени износа питательных насосов. Во избежание этого введено предварительное фильтрование сточных вод через стенку, а также покрытие мембран прочным составом.

В результате применения обратного осмоса для очистки сточных вод загрязненных радиоактивными веществами, активность воды в большинстве случае снижается на 2 - 3 порядка.

Ультрафильтрация в промышленных масштабах применяют для регенерации солей серебра из растворов, образующихся в производстве фотоэмульсий.

Стоимость очистки воды зависит от производительности установки и степени извлечения ценных примесей. Следует отметить, что стоимость смены мембран весьма высока и составляет от 4 до 12 долларов за 1м 2. Тем не менее затраты на очистку воды обратным осмосом и ультрафильтрацией, особенно на крупных установках, не превышает стоимости очистки воды широко известными методами.

Сегодня в статье будет проведен сравнительный анализ двух технологий для подготовки питьевой воды - традиционной с использованием осветлителей и фильтров механической очистки воды и ультрафильтрации. Прежде чем перейти непосредственно к сравнению этих технологий кратко напомним о каждой из них.

Традиционная схема очистки для подготовки питьевой воды.

Исходная вода содержит в себе различные примеси, которые необходимо удалять перед ее использованием в питьевом водоснабжении. В качестве первой ступени очистки воды в таком случае традиционно используют отстойники разных видов. При этом для удаления коллоидных примесей в отстойники добавляют специальный реагент - коагулянт, который вызывает сцепление коллоидных частиц во флоккулы с последующим выделением их из воды.
Вода, прошедшая коагуляцию, может содержать в себе частицы не успевших сформироваться хлопьев. Поэтому ей необходима дальнейшая фильтрация. Традиционно такую воду прогоняют через механические фильтры с разной степенью (одно или двухслойные) и типом загрузки.

Ультрафильтрация

Это технология мембранной очистки воды, когда жидкость проходит через имеющие множество пор мембраны, собранные в определенном модуле. Размеры мембран сопоставимы с размером удаляемых примесей, поэтому большинство примесей осаждается на мембранах. Ультрафильтрация очищает воду не только от коллоидных и взвешенных веществ, а также от бактерий и вирусов (log показывает степень удаления бактерий и вирусов).
При использовании ультрафильтрационной очистки, так же как и для традиционной обработки, в поток обрабатываемой воды дозируется коагулянт, доза которого в 3-5 раз меньше дозы коагулянта, используемого при коагуляции в осветлителе или напорной коагуляции.
Когда производительность мембранного модуля падает, проводится обратная промывка, после которой восстанавливаются исходные характеристики работы мембраны. При сильных загрязнениях проводится химическая промывка с добавлением реагентов.

Сравнение 2-х технологий

Факт 1 Выбор способа очистки определяется технико-экономическими показателями

В расчет берутся капитальные затраты, затраты, определяющие эффективность работы установок (качество очищенной воды), и затраты на обслуживание установок.
В таблице 1 представлена информация об эффективности очистки воды - данные взяты из доклада Ю. А. Рахманина .

Таблица 1

Эффективность очистки (традиционная технология/ ультрафильтрация)

Высокая/ Высокая

Умеренная/ Высокая

Отсутствие/ Умеренная

Отсутствие/ Отсутствие

Ухудшение/ Отсутствие

Коли-индекс

Сальмонеллы

Яйца гельминтов

Цисты лямблий

Ооцисты криптоспоридий

Цветность

Мутность

Окисляемость

Марганец

Нефтепродукты

Колифаги

Клостридии (сульфитредуцирующие)

Тяжелые металлы

Радионуклиды

Алюминий

Солевой состав

Показатели коррозионной активности

Тригалометаны и другие галогенсодержащие углеводороды

Формальдегид

Мутагенная активность

Из таблицы видно, что эффективность очистки воды с помощью ультрафильтрации значительно выше традиционной технологии. Это достигается более тонкой фильтрацией на установках ультрафильтрации - 0,01-0,03 мкм, тогда как стандартная тонкость фильтрации на песчаных фильтрах составляет 100 мкм, а теоретически получаемая - 10 мкм.

Факт 2 Значительно меньшее использование коагулянта в ультрафильтрации по сравнению с традиционной технологией

Обратимся к таблице 2 , в которой представлена информация по некоторым физическим и химическим параметрам речной воды и показателям, достигнутым после очистки 2-мя способами.

Таблица 2

Из таблицы видно, что при достижении почти одинаковых значений представленных показателей доза используемого при ультрафильтрации коагулянта ниже в 2-3 раза.

Факт 3 Высокая заводская готовность установок ультрафильтрации

Установки ультрафильтрации поставляются в полной заводской готовности, что существенно снижает объем строительных работ (и затрат, соответственно).
На рис.1 - проект примерно одинаковой производительности около 24 000 м³/сут на механических фильтрах и ультрафильтрации. Площадь, занимаемая установкой ультрафильтрации, в 4 раза меньше по сравнению с площадью, занимаемой механическими фильтрами и горизонтальным отстойником.

Примерные габариты традиционной установки: механические фильтры 18x42 м + осветлители 18x54 м. Общая площадь 1730 м². Примерные габариты ультрафильтрации 9x42 м. Общая площадь 380 м².

Факт 4 При новом строительстве капитальные затраты на традиционную двухступенчатую установку чуть превышают затраты на ультрафильтрацию

По стоимости оборудования многочисленные расчеты для промышленных установок показали, что при новом строительстве и использовании комплектующих и степени автоматизации одного класса, капитальные затраты на традиционную двухступенчатую установку чуть превышают затраты на ультрафильтрацию.
В таблице 3 сведены все затраты на установку осветления по традиционной технологии и ультрафильтрации в натуральных показателях. Из таблицы видно, что ультрафильтрация экономически более целесообразна для эксплуатации. Данное положение подтверждалось неоднократными технико-экономическими расчетами практически для всех промышленных объектов.

Таблица 3

Подытожим, установки ультрафильтрации выгоднее традиционного оборудования (отстойников и механических фильтров), потому что
1. эффективнее очищают воду
2. занимают гораздо меньшую площадь
3. требуют меньших затрат на капитальное строительство и меньших затрат на реагенты
К минусам использования установок ультрафильтрации можно отнести необходимость грамотного инжиниринга и эксплуатации и потребность в дополнительных реагентах для химических промывок, поэтому выбирать компанию-поставщика ультрафильтрационного оборудования нужно, ориентируясь на подтвержденный положительный опыт реализации проектов с ультрафильтрацией.

Используемая литература:
1. Академик РАН, РАЕН Ю.А.Рахманин, Актуализация проблем водообеспечения и пути их решения для повышения качества жизни россиян, III Всероссийский съезд водоканалов, Алушта, республика Крым 22-24.04.2015.
2. к.т.н. О. Ф. Парилова, Питьевое водоснабжение. Из прошлого в будущее

А. П. Андрианов, инж. (МГСУ); А. Г. Первов, д-р техн. наук (ГНЦ РФ НИИ ВОДГЕО)

Все больше внимания в настоящее время уделяется поиску новых перспективных методов очистки воды, более компактных, дешевых, простых в эксплуатации по сравнению с традиционными. К их числу относятся мембранные методы: ультрафильтрация и нанофильтрация.

Оба процесса имеют сходное аппаратурное оформление, но в технологическом плане имеются принципиальные различия. Если при эксплуатации нанофильтрационных установок накопившиеся в процессе работы на поверхности мембран осадки (задержанные из воды загрязнения) удаляются с помощью химических промывок (т. е. с применением реагентов), то при эксплуатации ультрафильтрационных мембран удаление загрязнений с поверхности мембран производится обратным током, как у фильтров с зернистой загрузкой. Поэтому безреагентная ультрафильтрация считается за рубежом технологией будущего .

Ультрафильтрация – это мембранный процесс, занимающий промежуточное положение между нанофильтрацией и микрофильтрацией. Ультрафильтрационные мембраны имеют размер пор от 20 до 1000 Å (или 0,002–0,1 мкм) и позволяют задерживать тонкодисперсные и коллоидные примеси, макромолекулы (нижний предел молекулярной массы составляет несколько тысяч), водоросли, одноклеточные микроорганизмы, цисты, бактерии и вирусы. Таким образом, использование мембранной ультрафильтрации для очистки воды позволяет сохранить ее солевой состав и осуществить осветление и обеззараживание воды без применения химических веществ, что делает эту технологию перспективной с экологической и экономической точек зрения.

Технология обработки воды с помощью ультрафильтрационных мембран заключается в «тупиковой» фильтрации воды через мембрану без сброса концентрата. Такой режим работы позволяет сократить расход воды на собственные нужды станции очистки и уменьшить ее общее энергопотребление. Процесс фильтрования длится 20-60 мин, после чего следует обратная промывка мембраны. Для этого часть очищенной воды под давлением подается в фильтратный тракт в течение 20-60 с. В процессе обратной промывки вода уносит с поверхности мембран слой накопившихся загрязнений. На рис. 1 показаны устройство и схема работы ультрафильтрационных рулонных элементов.

Рис. 1. Ультрафильтрационный модуль

а - рабочий режим; б - режим промывки; 1 - исходная вода; 2 - фильтрат; 3 - рулонный элемент; 4 - сброс концентрата; 5 - обратная промывка фильтратом

В процессе длительной работы производительность мембранных аппаратов постепенно уменьшается, так как на турбулизаторной сетке, на поверхности и на стенках пор мембран сорбируются различные вещества и отлагаются частички загрязнений, увеличивающие общее гидравлическое сопротивление мембранных аппаратов. Для восстановления первоначальной производительности несколько раз в год проводится химическая промывка мембранных аппаратов специальными кислотными и щелочными реагентами для удаления накопленных загрязнений.

При конструировании систем очистки воды на основе метода ультрафильтрации основной задачей, встающей перед проектировщиком, является правильное определение продолжительности прямого фильтрования, а также частоты и интенсивности обратных промывок. Эти параметры зависят от качества исходной воды и определяются исходя из оптимальных соотношений производительности ультрафильтрационной установки и ее общего водопотребления . Правильный выбор режима промывки обеспечивает эффективную работу установки, заключающуюся в длительном сохранении производительности и качества фильтрата. Авторами на примере обезжелезивания подземной воды была разработана методика поиска оптимальных параметров работы ультрафильтрационной установки.

Эффективность обратной промывки зависит от ее интенсивности (при неизменном давлении промывки можно оперировать длительностью обратной промывки) τ и интервала между промывками (продолжительность фильтроцикла) t. При заданном времени τ эффективность работы установки зависит от продолжительности t: чем меньше t, тем эффективнее проходит отмывка мембраны от загрязнений, но тем больше образуется промывной воды. Исследования по оптимизации процесса обратной промывки ставят целью определить такие значения τ и t для различного состава обрабатываемой воды, которые соответствуют наибольшему количеству очищенной воды, полученной в течение времени Т. Исследования проводились на модельных растворах хлорида железа (III) на ультрафильтрационных мембранах марки УАМ-150. На рис. 2 показано снижение производительности мембранного аппарата с течением времени для разных концентраций железа в исходной воде.

Для определения оптимальных величин продолжительности фильтроцикла и промывки проводилось несколько серий экспериментов с различной продолжительностью обратной промывки. В каждой серии при фиксированной длительности обратной промывки менялась продолжительность фильтроцикла. Зависимости объема фильтрата и промывной воды от времени работы установки для одной серии экспериментов приведены на рис. 3 (продолжительность обратной промывки 30 с).

Поиск оптимальных соотношений длительности фильтроцикла и промывки производится по максимальной полезной производительности мембранного аппарата, которую можно определить как Vполезн = Vф - Vпр.. Сначала оптимальные точки находились отдельно для каждой продолжительности промывки. На рис. 4 показано определение оптимальной продолжительности фильтроцикла при длительности промывки 30 с. Затем полученные кривые зависимости полезного объема чистой воды от продолжительности фильтроцикла сводятся в один график (рис. 5), и по точкам максимумов этих кривых строится результирующая кривая, которая позволяет определить максимальное количество очищенной воды в зависимости от t и τ и соответственно найти оптимальную длительность обратной промывки. Эксперименты по приведенному алгоритму определения точки оптимума повторяются для различных концентраций железа в исходной воде.

Таким образом, полученные в результате проведенных экспериментов данные могут использоваться в качестве рекомендаций при разработке систем обезжелезивания на основе мембранной ультрафильтрации.

Рис. 3. Зависимость объема фильтрата (сплошная линия) и промывной воды (пунктирная линия) от времени работы установки при длительности промывки 30 с

продолжительность фильтроцикла, мин: 1, 1¢ - 15; 2, 2¢ - 30; 3, 3¢ - 60

Рис. 4. Определение оптимальной продолжительности фильтроцикла при длительности обратной промывки 30 с

1 - Vф; 2 - Vполезн; 3 - Vпр

Помимо указанных выше параметров на эффективность работы мембранных аппаратов влияет величина давления: рабочего и обратной промывки. При определении точки оптимума необходимо учитывать не только полезную производительность, но и объемы исходной и сбрасываемой в канализацию воды, при этом вычисление оптимальных соотношений длительности промывки и фильтроцикла производится на основе экономических расчетов.

Рис. 5. Определение оптимальной продолжительности промывки для разной продолжительности фильтроцикла продолжительность обратной промывки, с: 1 - 15; 2 - 30; 3 - 45; 4 - 60; пунктир - оптимум

В результате исследований разработаны технологические схемы и конструкции установок, предназначенных для обработки подземных вод с повышенным содержанием железа. В зависимости от состава исходной воды производится выбор той или иной модификации установок, отличающихся устройством аэрации и маркой используемых мембран. Вместе с удалением железа на установках обеззараживают воду без использования реагентов, удаляют сероводород и осветляют воду в случае выноса из скважины глинистых частиц.

Метод обезжелезивания воды с помощью ультрафильтрации рекомендуется применять при следующих показателях качества исходной воды: железо общее – не более 40 мг/л; щелочность – не более (1+Fe2+/28) мг-экв/л; рН – не менее 6 (водородный показатель воды после аэрации должен быть не менее 6,7-7); содержание Н2S – не более 5 мг/л; перманганатная окисляемость – не более 6-10 мг/л.

При содержании железа до 5 мг/л и сероводорода до 2 мг/л применяется схема с упрощенной аэрацией и фильтрованием на мембранах типа УАМ-500 и УАМ-1000. При содержании железа до 20-40 мг/л и сероводорода выше 2 мг/л используется аэрация эжектированием или барботированием и дополнительная упрощенная аэрация. При содержании в исходной воде трудноокисляемого железа, низких значениях рН и отсутствии растворенной углекислоты степень аэрации увеличивается. В зависимости от продолжительности процесса окисления двухвалентного железа и расчетной производительности установки обезжелезивания назначается объем аэрационных сооружений.

При наличии в исходной воде грубодисперсных примесей и песка в начале технологического тракта предусматривается сетчатый самопромывающийся фильтр с размером ячеек 100- 200 мкм. Внешний вид и принципиальная технологическая схема установки приведены на рис. 6 и 7. В зависимости от содержания железа и мутности исходной воды потребление воды на собственные нужды станции составляет не более 3-5 %, удельная потребляемая мощность 1,5-2 кВт∙ч/м3.


Рис. 7. Технологическая схема обезжелезивания подземных вод с использованием ультрафильтрации (при содержании железа в исходной воде не более 5 мг/л)

Способ, который набирает всё большую популярность в сфере борьбы с микроорганизмами. Эффективный и комплексный метод обеззараживания воды.

Ультрафильтрация для обеззараживания воды — это относительно новый способ, поскольку он известен уже давно. Просто другие способы — реагентное обеззараживание воды и некоторые физические методы обеззараживания воды являются более старыми. Но и менее совершенными — с некоторых точек зрения. Начнём с определения.

Ультрафильтрация — это способ очистки воды, одновременная безреагентная дезинфекция и осветление воды. При ультрафильтрации из воды удаляются нерастворимые примеси.

Принцип ультрафильтрации в общем

Принцип технологии ультрафильтрации состоит в том, что через полупроницаемый барьер под определённым давлением продавливается вода. Отверстия в барьере меньше по размерам, чем вирусы и прочие нерастворимые примеси. Соответственно, всё, что больше вирусов, отсеивается.

Кроме того, не следует забывать, что для обработки воды ультрафиолетовым излучением необходима специальная подготовка воды — которая может не проводиться при обеззараживании при помощи ультрафильтрации.

Степень фильтрации на установках ультрафильтрации бывает разной. Это диапазон от 0,01 микрона (десятитысячная миллиметра) до 0,001 микрона. Этот показатель необходимо выяснять при покупке. Так, если производитель говорит, что ультрафильтрация, которую он предлагает, удаляет все вирусы из воды, а размер пор составляет 0,01 микрон, то это неправда. Существуют вирусы и меньшего размера. Для полного удаления вирусов необходимы диаметры примерно 0,005 микрон.

То есть, ультрафильтрация — исключительно физический способ очистки воды, без постоянного применения химических реагентов.

Далее, если производитель говорит, что у него микрофильтрационная мембрана (например, трековая), и она удаляет вирусы и споры бактерий, то это неправда. Так как отверстия в микрофильтрационной мембране БОЛЬШЕ, чем споры бактерий и вирусы. Споры бактерий удаляются на ультрафильтрационной мембране. И полностью.

Таким образом, технология ультрафильтрации эффективнее обеззараживает воду, чем ультрафиолетовое излучение. Кроме того, для обработки воды с помощью ультрафильтрации нет необходимости серьёзно предподготавливать воду. Достаточно 30 микронного предварительного фильтра механической очистки воды.

Большой плюс технологии ультрафильтрации — это комплексная технология. И если химическое обеззараживание и ультрафиолет отвечают за обеззараживание и в какой-то мере слипание частиц, то технология ультрафильтрации кроме обеззараживания выполняет функцию осветления воды. То есть, до очистки вода была мутной и с бактериями, а после неё — прозрачная и продезинфецированная.

Существует две большие группы аппаратов ультрафильтрации.

Первая группа — питьевые системы , которые устанавливаются под кухонную мойку. Скорость очистки воды с помощью бытовой системы ультрафильтрации чаще всего составляет 2-3 литров в минуту, но бывает и больше. То есть, вода подготавливается в количестве, нужном для питья и приготовления пищи. Чаще всего питьевые системки на основе ультрафильтрции устроены по типу многоступенчатых систем обратного осмоса. Те же колбы, только вместо мембраны осмоса стоит мембрана ультрафильтрации. И нет накопительного бачка.

То есть, аппарат состоит не из голой ультрафильтрационной мембраны, а ещё и из нескольких ступеней предварительной очистки воды (чаще всего , ). То есть, бытовая система ультрафильтрации удаляет не только бактерии-вирусы, но и механические примеси, хлор, хлор-органические соединения.

Мембраны ультрафильтрации для питьевых систем могут быть керамическими и органическими. Чаще всего они организованы по типу полых волокон, внутри которых протекает грязная вода, а фильтрация проихсодит изнутри наружу. Керамические мембраны более долговечны. Однако, и у тех, и у других существует свой ресурс, после которого их нужно заменить. На показатель ресурса так же необходимо обращать внимание при выборе аппарата.

Вторая группа — системы ультрафильтрации с большой производительностью — от 500 литров в час. Эти системы предназначены для очистки воды на целый , коттедж , квартиру, ресторан, производство. Промышленные ультрафильтрационные установки могут организовываться как по типу полых волокон, так и в виде спиральной навивки.

Ультрафильтрация для дома, квартиры может использоваться не только дом или квартиру. В чистой продезинфицированной воде необходима для многих отраслей — для производства, для медицинских учреждений, для бассейнов и так далее. В любом из этих случаев используются практически одинаковые мембранные модули.

Важно, что основной рабочий элемент ультрафильтрационного аппарата — мембрана ультрафильтрации — нуждается в периодическом обеззараживании. Если она не керамическая. Бактерии любят материал, из которого сделана мембрана, и начинают его есть. Ну, и сначала мембрана превращается в микрофильтрационную, а затем в обычный механический фильтр.

Чтобы этого не происходило, необходимо регулярное обеззараживание мембраны. Частоту обеззараживания мембраны расчитывают специалисты на основе бактериального анализа воды. Керамическая мембрана может служить практически вечно, так как её не могут повредить бактерии, и она легко может отмываться агрессивными моющими средствами. Так что, если есть возможность, лучше использовать керамические мембраны ультрафильтрации.

Если нет, то нужно сравнивать между собой доступные органические мембраны. И выбирать наиболее производительную и наиболее долговечную мембрану. Даже если она дороже, выгоднее приобретать ту, которая служит дольше. Так экономические расходы получаются намного меньше.

Итак, ультрафильтрация — это экономичный и надёжный способ обеззараживания воды.

По материалам Выбор фильтров для воды : http://voda.blox.ua/2008/06/Kak-vybrat-filtr-dlya-vody-20.html